Generating Mapping Class Groups by Involutions

نویسنده

  • Martin Kassabov
چکیده

Let Σg,b denote a closed oriented surface genus g with b punctures and let Modg,b denote its mapping class group. In [10] Luo proved that if the genus is at least 3, the group Modg,b is generated by involutions. He also asked if there exists a universal upper bound, independent of genus and the number of punctures, for the number of torsion elements/involutions needed to generate Modg,b. Brendle and Farb in [1] gave a partial answer in the case of closed surfaces and surfaces with one puncture, by describing a generating set consisting of 7 involutions. Our main result generalizes the above result to the case of multiple punctures. We also show that the mapping class group can be generated by smaller number of involutions. More precisely, we prove that the mapping class group can be generated by 4 involutions if the genus g is large enough. There is not a lot room to improve this bound because to generate this group we need at lest 3 involutions. In the case of small genus (but at least 3) to generate the whole mapping class group we need a few more involutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating the mapping class group of a punctured surface by involutions

Let Σg,b denote a closed orientable surface of genus g with b punctures and let Mod(Σg,b) denote its mapping class group. In [Luo] Luo proved that if the genus is at least 3, Mod(Σg,b) is generated by involutions. He also asked if there exists a universal upper bound, independent of genus and the number of punctures, for the number of torsion elements/involutions needed to generate Mod(Σg,b). B...

متن کامل

Excedance Number for Involutions in Complex Reflection Groups

We define the excedance number on the complex reflection groups and compute its multidistribution with the number of fixed points on the set of involutions in these groups. We use some recurrences and generating functions manipulations to obtain our results.

متن کامل

Involutions Avoiding the Class of Permutations

An involution π is said to be τ -avoiding if it does not contain any subsequence having all the same pairwise comparisons as τ . This paper concerns the enumeration of involutions which avoid a set Ak of subsequences increasing both in number and in length at the same time. Let Ak be the set of all the permutations 12π3 . . . πk of length k. For k = 3 the only subsequence in Ak is 123 and the 1...

متن کامل

Generating-tree isomorphisms for pattern-avoiding involutions∗

We show that for k ≥ 5 and the permutations τk = (k − 1)k(k − 2) . . . 312 and Jk = k(k − 1) . . . 21, the generating tree for involutions avoiding the pattern τk is isomorphic to the generating tree for involutions avoiding the pattern Jk. This implies a family of Wilf equivalences for pattern avoidance by involutions; at least the first member of this family cannot follow from any type of pre...

متن کامل

Ja n 20 04 Involutions Restricted by 3412 , Continued Fractions , and Chebyshev Polynomials

We study generating functions for the number of involutions, even involutions, and odd involutions in Sn subject to two restrictions. One restriction is that the involution avoid 3412 or contain 3412 exactly once. The other restriction is that the involution avoid another pattern τ or contain τ exactly once. In many cases we express these generating functions in terms of Chebyshev polynomials o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008